4.8 Article

In-situ areal inspection of powder bed for electron beam fusion system based on fringe projection profilometry

期刊

ADDITIVE MANUFACTURING
卷 31, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2019.100940

关键词

Additive manufacturing; Fringe projection technique; In-situ measurement; Surface geometry; Electron Beam Powder Bed Fusion (PBF-EB); System calibration

资金

  1. UK's Engineering and Physical Sciences Research Council (EPSRC) of Future Metrology Hub [EP/P006930/1]
  2. Innovate UK of the RAMP-Up project [59605-453176]
  3. EPSRC [EP/P006930/1] Funding Source: UKRI

向作者/读者索取更多资源

Additive manufacturing (AM) techniques provide significant advantages over conventional subtractive manufacturing techniques in terms of the wide range of part geometry that can be obtained. Powder delivery is a process that occurs thousands of times during the AM build process, consequently assessment of delivery quality would be advantageous in the process in order to provide feedback for process control. This paper presents an in-situ quantitative inspection technique for assessing the whole of the powder bed post raking, by using fringe projection profilometry. In order to increase accuracy and traceability of the inspection technique, an accepted fringe projection method, is enhanced using a novel surface fitting algorithm employed to reduce the influence of phase error and random noise during calibration. A simulation was conducted to verify the accuracy of the proposed system calibration. The proposed in-situ inspection technique has been applied in an Electron Beam Powder Bed Fusion (PBF-EB) machine, also known as Electron Beam Melting (EBM). Some examples of melting edge swelling and excessive powder delivery due to rake damage during a real part build are used to demonstrate the system capability on the actual EBM machine. A build process with presented fringe projection system is reported in this paper. Experimental results demonstrate that powder defects can be efficiently inspected and the results used as feedback information in a build process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据