4.4 Article

A computational method for finding the availability of opportunistically maintained multi-state systems with non-exponential distributions

期刊

IISE TRANSACTIONS
卷 52, 期 9, 页码 1047-1061

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/24725854.2019.1688897

关键词

Availability; multi-state system; non-exponential distributions; corrective maintenance; preventive maintenance

向作者/读者索取更多资源

Availability is one of the most important performance measures of a repairable system. Among various mathematical methods, the method of supplementary variables is an effective way of modeling the steady-state availability of systems governed by non-exponential distributions. However, when all the underlying probability distributions are non-exponential (e.g., Weibull), the corresponding state equations are difficult to solve. To overcome this challenge, a new method is proposed in this article to determine the steady-state availability of a multi-state repairable system, where all the state sojourn times, as well as the maintenance times, are generally distributed. As an indispensable step, the well-posedness and stability of the system's state equations are illustrated and proved using C-0 operator semigroup theory. Afterwards, based on the generalized Integral Mean Value Theorem, the expression for system steady-state availability is derived as a function of state probabilities. Then, the original problem is transformed into a system of linear equations that can be easily solved. A simulation study and an instance studied in the literature are used to demonstrate the applications of the proposed method in practice. These numerical examples illustrate that the proposed method provides a new computational tool for effectively evaluating the availability of a repairable system without relying on simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据