4.4 Article

Time-Dependent Density Functional Theory Investigation of the UV-Vis Spectra of Organonitrogen Chromophores in Brown Carbon

期刊

ACS EARTH AND SPACE CHEMISTRY
卷 4, 期 2, 页码 311-320

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsearthspacechem.9b00328

关键词

light-absorbing organic aerosols; nitroaromatics; nitro-heterocyclic compounds; organonitrates; Maillard-type reaction products; density functional theory; solvent effects; pH effects

资金

  1. UCR Office of Research and Development Collaborative Seed Grant Program
  2. UCR Hellman Fellowship

向作者/读者索取更多资源

The ability of brown carbon (BrC) in aerosols to absorb solar radiation is an important but highly uncertain factor in climate forcing. The uncertainties are partially due to incomplete characterization of BrC chromophores and lack of authentic standards to confirm light absorption. Organonitrogen species are crucial components in atmospheric aerosols, but their light-absorbing properties remain to be fully characterized. To facilitate the molecular characterization of BrC chromophores, time-dependent density functional theory (TD-DFT) based computational chemistry approaches were used in this study to predict the light absorption spectra of 16 organonitrogen species, including nitroaromatics, nitro-heterocyclic compounds, organonitrates, and Maillard-type reaction products in BrC. Effects of basis sets, functionals, solvation, and pH on light absorption properties of these compounds were evaluated. Predicted absorption spectra were compared with experimental measurements. Overall, the PBE0 and B3LYP functionals tend to outperform PBE and CAM-B3LYP on the predicted absorption spectra of studied compounds. Absorbance calculated in water and methanol (bulk solvents) varies up to 2 nm (0.03 eV). Absorbance calculated in gas phase (vacuum state) blue-shifts in comparison to solvation. Absorbance of weak acids (e.g., nitrophenols) is enhanced under basic conditions, and the absorption spectra can be predicted by the fractions of conjugate acid-base species. Results from this study demonstrate that a combined use of TD-DFT predictions and experimental measurements of light absorption can allow for a rapid and reliable determination of potential chromophores in BrC when authentic standards are not available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据