4.5 Article

Tailoring Biodegradability of Poly(Butylene Succinate)/Poly(Lactic Acid) Blends With a Deep Eutectic Solvent

期刊

FRONTIERS IN MATERIALS
卷 7, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmats.2020.00007

关键词

polymer; polyester; deep eutectic solvent; biodegradation; composting

资金

  1. French Ministry of High Education and Research
  2. Pulsalys-SATT Lyon Saint-Etienne

向作者/读者索取更多资源

Biodegradable polymers concern an important topic for innovation in materials, as they are supposed to contribute to the reduction in the amount of waste materials, which lead to microplastics with similar properties as conventional polymer materials. Poly(butylene succinate) and poly(lactic acid) blends are polymers with interesting properties offering possible alternatives to some conventional petrochemical-sourced polymers. Some of the physical properties of such blends can be tailored from the addition of small amounts of deep eutectic solvents (DESs) that can act as compatibilizers, i.e., interfacial agents between poly(butylene succinate) (PBS) and poly(lactic acid) (PLA). In our study, materials formulated with a DES having a coarse morphology according to the dispersed particle sizes display thermal and mechanical properties rather close to the non-compatibilized PBS/PLA blends but a higher ability to biodegrade. In comparison with PBS/PLA blend, biodegradation experiments show that PBS/PLA/DES blend exhibits higher weight losses and faster fragmentation under conventional conditions. A significant decrease in PLA melting temperature under composting conditions, i.e., at 58 degrees C, is observed indicating that PLA phase is the component mainly concerned. As a conclusion, this work demonstrates that morphologies as well as the biodegradability process can be tailored by adding a small amount of a DES in such biosourced polymer blends. Indeed, designing polymer materials, for which degradation processes are targeted in the dispersed phase, i.e., in multiple locations of the material, can be an efficient route to predegrade phases in a polymer matrix to accelerate macroscopic biodegradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据