4.4 Article

Homoacetogenesis and microbial community composition are shaped by pH and total sulfide concentration

期刊

MICROBIAL BIOTECHNOLOGY
卷 13, 期 4, 页码 1026-1038

出版社

WILEY
DOI: 10.1111/1751-7915.13546

关键词

-

资金

  1. European Regional Development Fund through the Interreg V program Flanders-the Netherlands [0165]
  2. KAUST [OSR-2016-CRG5-2985]
  3. UGent
  4. BOF Basisinfrastructuur [01B05912]

向作者/读者索取更多资源

Biological CO2 sequestration through acetogenesis with H-2 as electron donor is a promising technology to reduce greenhouse gas emissions. Today, a major issue is the presence of impurities such as hydrogen sulfide (H2S) in CO2 containing gases, as they are known to inhibit acetogenesis in CO2-based fermentations. However, exact values of toxicity and inhibition are not well-defined. To tackle this uncertainty, a series of toxicity experiments were conducted, with a mixed homoacetogenic culture, total dissolved sulfide concentrations ([TDS]) varied between 0 and 5 mM and pH between 5 and 7. The extent of inhibition was evaluated based on acetate production rates and microbial growth. Maximum acetate production rates of 0.12, 0.09 and 0.04 mM h(-1) were achieved in the controls without sulfide at pH 7, pH 6 and pH 5. The half-maximal inhibitory concentration (IC50qAc) was 0.86, 1.16 and 1.36 mM [TDS] for pH 7, pH 6 and pH 5. At [TDS] above 3.33 mM, acetate production and microbial growth were completely inhibited at all pHs. 16S rRNA gene amplicon sequencing revealed major community composition transitions that could be attributed to both pH and [TDS]. Based on the observed toxicity levels, treatment approaches for incoming industrial CO2 streams can be determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据