4.7 Article

Ten-Gram-Scale Synthesis of FAPbX3 Perovskite Nanocrystals by a High-Power Room-Temperature Ultrasonic-Assisted Strategy and Their Electroluminescence

期刊

ADVANCED MATERIALS TECHNOLOGIES
卷 5, 期 4, 页码 -

出版社

WILEY
DOI: 10.1002/admt.201901089

关键词

electroluminescence; FAPbX(3); gram-scale synthesis; light-emitting diodes; perovskite nanocrystals

资金

  1. National Natural Science Foundation of China [51675322, 61605109, 61735004]
  2. National Key Research and Development Program of China [2016YFB0401702]
  3. Shanghai Science and Technology Committee [19010500600]
  4. Shanghai Rising-Star Program [17QA1401600]
  5. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
  6. National Natural Science Foundation for Distinguished Young Scholars of China [51725505]
  7. Science and Technology Commission of Shanghai Municipality Program [19DZ2281000, 17DZ2281700]

向作者/读者索取更多资源

Metal halide perovskite nanocrystals (NCs) have shown significant potential in light-emitting applications due to the unique luminous properties, such as high color purity, tunability, and solution processability. However, the large-scale production of perovskite NCs with high-quality for meeting the commercial applications is still a challenge. Herein, a facile room-temperature synthesis of ten-gram-scale FAPbX(3) (FA(+) = HC(NH2)(2)(+), X = Br, or mixed halide system Cl/Br and Br/I) NCs by a high-power ultrasonic-assisted strategy and the electroluminescence for light-emitting diodes (LEDs) is reported. The uniform high-power radiation avoids the adverse effects caused by heating and stirring unevenness, and no inert gas is needed in the reaction process. Meanwhile, the room temperature reaction reduces the crystallization rate of the NCs, leading to the successful synthesis of ten-gram-scale high-quality FAPbX(3) perovskite NCs. The resulting NCs show size-focus distribution and high photoluminescence quantum yields of 93%, and the adjustable photoluminescence spectra from 453 to 695 nm by manipulating halide compositions. Attributed to the acquired FAPbBr(3) NCs, a high-efficiency green LED with the maximum current efficiency of 61.3 cd A(-1) and external quantum efficiency of 14.1% is also obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据