4.8 Article

Combining thermodynamics with tensor completion techniques to enable multicomponent microstructure prediction

期刊

NPJ COMPUTATIONAL MATERIALS
卷 6, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41524-019-0268-y

关键词

-

资金

  1. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (INTERDIFFUSION) [714754]
  2. Fonds de la Recherche Scientifique-FNRS under EOS Project [30468160]
  3. Fonds Wetenschappelijk Onderzoek-Vlaanderen under EOS Project [30468160]
  4. European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Advanced Grant: BIOTENSORS [339804]
  5. KU Leuven Internal Funds [C16/15/059, PDM/18/146]

向作者/读者索取更多资源

Multicomponent alloys show intricate microstructure evolution, providing materials engineers with a nearly inexhaustible variety of solutions to enhance material properties. Multicomponent microstructure evolution simulations are indispensable to exploit these opportunities. These simulations, however, require the handling of high-dimensional and prohibitively large data sets of thermodynamic quantities, of which the size grows exponentially with the number of elements in the alloy, making it virtually impossible to handle the effects of four or more elements. In this paper, we introduce the use of tensor completion for high-dimensional data sets in materials science as a general and elegant solution to this problem. We show that we can obtain an accurate representation of the composition dependence of high-dimensional thermodynamic quantities, and that the decomposed tensor representation can be evaluated very efficiently in microstructure simulations. This realization enables true multicomponent thermodynamic and microstructure modeling for alloy design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据