4.8 Article

Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents

期刊

SCIENCE ADVANCES
卷 6, 期 8, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aay8973

关键词

-

资金

  1. Chemistry of Indoor Environments program of the Alfred P. Sloan Foundation [G-2016-7049, G-2016-7050, G-2017-9944]

向作者/读者索取更多资源

Human health is affected by indoor air quality. One distinctive aspect of the indoor environment is its very large surface area that acts as a poorly characterized sink and source of gas-phase chemicals. In this work, air-surface interactions of 19 common indoor air contaminants with diverse properties and sources were monitored in a house using fast-response, on-line mass spectrometric and spectroscopic methods. Enhanced-ventilation experiments demonstrate that most of the contaminants reside in the surface reservoirs and not, as expected, in the gas phase. They participate in rapid air-surface partitioning that is much faster than air exchange. Phase distribution calculations are consistent with the observations when assuming simultaneous equilibria between air and large weakly polar and polar absorptive surface reservoirs, with acid-base dissociation in the polar reservoir. Chemical exposure assessments must account for the finding that contaminants that are fully volatile under outdoor air conditions instead behave as semivolatile compounds indoors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据