4.7 Review

Bacterial diguanylate cyclases: Structure, function and mechanism in exopolysaccharide biofilm development

期刊

BIOTECHNOLOGY ADVANCES
卷 33, 期 1, 页码 124-141

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2014.11.010

关键词

Bacterial diguanylates cyclase; Cyclic di-guanosine monophosphate; Exopolysaccharides; Biofilm; Structure; Biosynthesis; Aerobic granules

资金

  1. Ministry of Science and Technology [MOST] [103-2811-E-011-006]

向作者/读者索取更多资源

The ubiquitous bacterial cyclic di-guanosine monophosphate (c-di-GMP) emerges as an important messenger for the control of many bacterial cellular functions including virulence, motility, bioluminescence, cellulose biosynthesis, adhesion, secretion, community behaviour, biofilm formation and cell differentiation. The synthesis of this cyclic nucleotide arises from external stimuli on various signalling domains within the N-terminal region of a dimeric diguanylate cyclase. This initiates the condensation of two molecules of guanosine triphosphate juxtaposed to each other within the C-terminal region of the enzyme. The biofilm from pathogenic microbes is highly resistant to antimicrobial agents suggesting that diguanylate cyclase and its product - c-di-GMP - are key biomedical targets for the inhibition of biofilm development. Furthermore the formation and long-term stability of the aerobic granule, a superior biofilm for biological wastewater treatment, can be controlled by stimulation of c-di-GMP. Any modulation of the synthetic pathways for c-di-GMP is clearly advantageous in terms of medical, industrial and/or environmental bioremediation implications. This review discusses the structure and reaction of individual diguanylate cyclase enzymes with a focus on new directions in c-di-GMP research. Specific attention is made on the molecular mechanisms that control bacterial exopolysaccharide biofilm formation and aerobic granules. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据