4.1 Article

Multichannel, triaxial, neutron time-of-flight diagnostic for experiments at the Z facility

期刊

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevAccelBeams.23.020401

关键词

-

向作者/读者索取更多资源

Neutron bang times t(bang) and mean neutron speeds (u) over bar have been measured at the Z facility for a series of D-2-filled targets, in magnetized liner inertial fusion experiments. Measurements were made by a novel neutron time-of-flight (nTOF) diagnostic, adapted for use at this facility, and consisted of detecting the neutron times in flight at seven independent scintillator-photomultiplier tube detectors (channels), located on three noncoplanar lines of sight, with distances to the neutron source varying between 690 and 2510 cm. The nTOF signals were analyzed by identifying fiducials on the detector traces to quantify the time in flight to each distance, using a nonrelativistic model for a uniformly thermalized, Maxwellian plasma distribution. The measured neutron arrival times were then linearly regressed on distance with the bang time and mean speed estimated from the fit parameters. A particular shot, 2584, is analyzed here to illustrate the method and the issues encountered in these measurements. On this particular shot, six usable channel traces were obtained. The standard errors of the parameter fits were as follows: t(bang) = 3102.95 +/- 0.97 ns (standard error) with six nTOF traces on the system clock and (u) over bar = 2.1524 +/- 0.0032 cm/ns (standard error), from which the mean, nonrelativistic, kinetic energy (E) over bar of the neutrons was 2.4216 +/- 0.0144 MeV (standard error). The estimates of (u) over bar and (E) over bar here agree within 1% of the published values for the D(d, n)He-3 reaction. Hence, these measurements are consistent with the production of a thermalized, Maxwellian D-D fusion plasma in this experiment. The source duration was estimated to be 3.25 +/- 0.84 ns (standard error) from six pulse-width measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据