4.6 Article

AuNP-Amplified Surface Acoustic Wave Sensor for the Quantification of Exosomes

期刊

ACS SENSORS
卷 5, 期 2, 页码 362-369

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.9b01869

关键词

surface acoustic wave; biosensor; exosome; detection; gold nanoparticles; signal amplification

资金

  1. National Natural Science Foundation of China [21675041, 21974035]

向作者/读者索取更多资源

In this study, we report a gold nanoparticle (AuNP)-amplified surface acoustic wave (SAW) sensor for exosome detection with high sensitivity. The SAW chip was self-assembled with mercapto acetic acid to generate carboxylic groups via the Au-S bond. Anti-CD63 was then anchored onto the chip by pretreatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide,1-hydroxypyrrolidine-2,5-dione (NHS). Due to the existence of a membrane protein, CD63, on the exosome surface, exosomes could be bound onto the antibody-immobilized SAW chip. To amplify the detection signal, both the biotin-conjugated epithelial cell adhesion molecule (EpCAM) antibody as a secondary antibody and AuNP-labeled streptavidin were applied onto the exosome-bound SAW chip, resulting in AuNP assembly on the chip through biotin-avidin recognition. The sensor was capable of detecting 1.1 X 10(3) particles/mL exosomes, which was about 2 orders of magnitude higher than those detected by the strategy without using signal amplification. The sensor also achieved a satisfactory specificity and could detect the low-abundance exosomes directly in blood samples from cancer patients with minimal disturbance. This makes the SAW sensor useful for early diagnosis of cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据