4.2 Article

General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution

出版社

HINDAWI LTD
DOI: 10.1177/1550147720911009

关键词

EEG classification; discrete wavelet transform; epileptic seizures; machine learning; differential evolution

资金

  1. deanship of Research and Graduate Studies in Zarqa University/Jordan

向作者/读者索取更多资源

Wavelet family and differential evolution are proposed for categorization of epilepsy cases based on electroencephalogram (EEG) signals. Discrete wavelet transform is widely used in feature extraction step because it efficiently works in this field, as confirmed by the results of previous studies. The feature selection step is used to minimize dimensionality by excluding irrelevant features. This step is conducted using differential evolution. This article presents an efficient model for EEG classification by considering feature extraction and selection. Seven different types of common wavelets were tested in our research work. These are Discrete Meyer (dmey), Reverse biorthogonal (rbio), Biorthogonal (bior), Daubechies (db), Symlets (sym), Coiflets (coif), and Haar (Haar). Several kinds of discrete wavelet transform are used to produce a wide variety of features. Afterwards, we use differential evolution to choose appropriate features that will achieve the best performance of signal classification. For classification step, we have used Bonn databases to build the classifiers and test their performance. The results prove the effectiveness of the proposed model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据