4.6 Article

Evaluation of the Antibacterial Activity of a Geopolymer Mortar Based on Metakaolin Supplemented with TiO2 and CuO Particles Using Glass Waste as Fine Aggregate

期刊

COATINGS
卷 10, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/coatings10020157

关键词

geopolymer; glass waste; titanium oxide; copper oxide; antibacterial surfaces

资金

  1. Universidad del Valle (Cali, Colombia) [139-2017]

向作者/读者索取更多资源

Metakaolin-based geopolymer cements were produced by alkaline activation with a potassium hydroxide and potassium silicate solution. To produce the geopolymer composites, 10 wt.% titanium oxide (TiO2) and 5 wt.% copper oxide (CuO) nanoparticles were used. The geopolymer mortar was prepared using glass waste as fine aggregate. The raw materials and materials produced were characterized by X-ray diffraction, electron microscopy, and Fourier-transform infrared spectroscopy techniques. Likewise, the geopolymer samples were characterized to determine their physical properties, including their density, porosity, and absorption. The photocatalytic activity of the materials was evaluated by activating the nanoparticles in a chamber with UV-Vis light during 24 h; then, different tests were performed to determine the growth inhibition of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa bacteria in nutrient agar for times of up to 24 h. The study results showed that a geopolymer mortar containing glass waste as fine aggregate (GP-G) exhibited a water absorption 56.73% lower than that of the reference geopolymer paste without glass (GP). Likewise, glass particles allowed the material to have a smoother and more homogeneous surface. The pore volume and density of the GP-G were 37.97% lower and 40.36% higher, respectively, than those of the GP. The study with bacteria showed that, after 24 h in the culture media, the GP-G mortars exhibited a high inhibition capacity for the growth of P. aeruginosa from solutions of 10(-4) mL and in solutions of 10(-6) mL for E. coli and S. aureus. These results indicate the possibility of generating antibacterial surfaces by applying geopolymer composite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据