4.8 Review

Carcinoma Cell Hyaluronan as a Portable Cancerized Prometastatic Microenvironment

期刊

CANCER RESEARCH
卷 76, 期 9, 页码 2507-2512

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-15-3114

关键词

-

类别

资金

  1. NCI NIH HHS [R21 CA205455, R01 CA119092, P30 CA077598] Funding Source: Medline

向作者/读者索取更多资源

Hyaluronan (HA) is a structurally simple polysaccharide, but its ability to act as a template for organizing pericellular matrices and its regulated synthesis and degradation are key to initiating repair responses. Importantly, these HA functions are usurped by tumor cells to facilitate progression and metastasis. Recent advances have identified the functional complexities associated with the synthesis and degradation of HA-rich matrices. Three enzymes synthesize large HA polymers while multiple hyaluronidases or tissue free radicals degrade these into smaller bioactive fragments. A family of extracellular and cell-associated HA-binding proteins/receptors translates the bioinformation encrypted in this complex polymer mixture to activate signaling networks required for cell survival, proliferation, and migration in an actively remodeling microenvironment. Changes in HA metabolism within both the peritumor stroma and parenchyma are linked to tumor initiation, progression, and poor clinical outcome. We review evidence that metastatic tumor cells must acquire the capability to autonomously synthesize, assemble, and process their own portable HA-rich microenvironments to survive in the circulation, metastasize to ectopic sites, and escape therapeutic intervention. Strategies to disrupt the HA machinery of primary tumor and circulating tumor cells may enhance the effectiveness of current conventional and targeted therapies. (C) 2016 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据