4.8 Article

Epigenetic Switch between SOX2 and SOX9 Regulates Cancer Cell Plasticity

期刊

CANCER RESEARCH
卷 76, 期 23, 页码 7036-7048

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-15-3178

关键词

-

类别

向作者/读者索取更多资源

Cell differentiation within stem cell lineages can check proliferative potential, but nodal pathways that can limit tumor growth are obscure. Here, we report that lung cancer cell populations generate phenotypic and oncogenic plasticity via a switch between differentiation programs controlled by SOX2 and SOX9, thus altering proliferative and invasive capabilities. In lung cancer cells, SOX2 bound the EPCAM promoter to induce EpCAM-p21(Cip1)-cyclin A2 signaling, encouraging cell proliferation as well as barrier properties. In contrast, SOX9 bound the SLUG promoter to induce SLUG-mediated cell invasion with a spindle-like phenotype. Pharmacologic inhibition of HDAC elevated a SOX9-positive cell population from SOX2-positive cells, whereas ectopic expression of SOX2 inhibited SOX9 with increased H3K9me2 levels on the SOX9promoter. In clinical specimens, the expression of SOX2 and SOX9 correlated negatively and positively with lung tumor grade, respectively. Our findings identify SOX2 and SOX9 as nodal epigenetic regulators in determining cancer cell plasticity and metastatic progression. (C) 2016 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据