4.7 Article

What Controls Variations in Aftershock Productivity?

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019JB018111

关键词

-

资金

  1. NSF-EAR Grant [1802364]

向作者/读者索取更多资源

The number of aftershocks increases with mainshock size following a well-defined scaling law. However, excursions from the average behavior are common. This variability is particularly concerning for large earthquakes where the number of aftershocks varies by factors of 100 for mainshocks of comparable magnitude. Do observable factors lead to differences in aftershock behavior? We examine aftershock productivity relative to the global average for all mainshocks (M-W > 6.5) from 1990 to 2019. A global map of earthquake productivity highlights the influence of tectonic regimes. Earthquake depth, lithosphere age, and plate boundary type correspond well with earthquake productivity. We investigate the role of mainshock attributes by compiling source dimensions, radiated seismic energy, stress drop, and a measure of slip heterogeneity based on finite-fault source inversions for the largest earthquakes from 1990 to 2017. On an individual basis, stress drop, normalized rupture width, and aspect ratio most strongly correlate with aftershock productivity. A multivariate analysis shows that a particular set of parameters (dip, lithospheric age, and normalized rupture area) combines well to improve predictions of aftershock productivity on a cross-validated data set. Our overall analysis is consistent with a model in which the volumetric abundance of nearby stressed faults controls the aftershock productivity rather than variations in source stress. Thus, we suggest a complementary approach to aftershock forecasts based on geological and rupture properties rather than local calibration alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据