4.6 Article

The Influence of Elevated Smoke Layers on Stratocumulus Clouds Over the SE Atlantic in the NASA Goddard Earth Observing System (GEOS) Model

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019JD031209

关键词

Biomass Burning Aerosols; Stratocumulus Clouds; South-East Atlantic; Global Model

资金

  1. NASA Earth Science Division
  2. NASA MAP under GEOS-CCM project

向作者/读者索取更多资源

Previous evaluations of simulated aerosol transport over the south-east Atlantic by global aerosol models, including the Goddard Earth Observing System (GEOS) atmospheric general circulation model, showed that the bulk of the modeled smoke aerosol layer resided similar to 1-2 km lower than Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar observations. Using this finding as the motivation, this study examines the changes in model-simulated cloud properties in response to redistributing the vertical placement of the aerosol over the ocean. Ten years (2006-2015) of CALIOP-retrieved smoke aerosol extinction profiles were used to redistribute the model-simulated aerosol mass on a monthly mean basis, keeping the column aerosol mass conserved. The results from the model sensitivity experiments show that elevating the aerosol layer to higher levels in agreement with CALIOP observations causes an increase in cloud fractions by similar to 33% for shallow marine boundary layers (MBL) and a decrease by similar to 30% for deeper MBL. For a shallow MBL, aerosol-induced warming within the cloud layers for the lower altitude aerosol case decreases relative humidity at these levels and leads to a reduction of overall cloud amount compared to the elevated aerosol case. For a deeper MBL, however, aerosol heating within the upper cloud levels in the lower altitude aerosol case increases the underlying MBL stability, which suppresses the cloud vertical extent, enhances cloud cover, and delays the stratocumulus to cumulus transition. Finally, aerosol redistribution impacts on radiative forcing are investigated, which appear to be mainly driven by the changes in cloud area fractions rather than in-cloud liquid water path changes between the model experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据