4.7 Article

Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies

期刊

GEOSCIENCE FRONTIERS
卷 11, 期 4, 页码 1345-1352

出版社

CHINA UNIV GEOSCIENCES, BEIJING
DOI: 10.1016/j.gsf.2020.01.013

关键词

Astrochronology; Astronomical time scale; Uncertainty; Cretaceous; Turonian; Demerara rise

资金

  1. NSF [1835717, EAR-1151438]
  2. Direct For Computer & Info Scie & Enginr
  3. Office of Advanced Cyberinfrastructure (OAC) [1835717] Funding Source: National Science Foundation

向作者/读者索取更多资源

One of the clocks that record the Earth history is (quasi-) periodic astronomical cycles. These cycles influence the climate that can be ultimately stored in sedimentary rocks. By cracking these (quasi-) periodic sedimentation signals, high resolution astronomical time scale (ATS) can be obtained. Paleoclimate proxies are widely used to extract astronomical cycles. However different proxies may respond differently to astronomical signals and non-astronomical noises including tectonics, diagenesis, and measurement error among others. Astronomical time scale constructed based on a single proxy where its signal-to-noise ratio is low may have uncertainty that is difficult to evaluate but can be revealed by utilizing other proxies. Here, we test eight astronomical age models using two astrochronological methods from four paleoclimate proxies (i.e., color reflection L* and b*, natural gamma radiation, and bulk density) from the Turonian to the Coniacian of the Cretaceous Period at the Demerara Rise in the equatorial Atlantic. The two astrochronological methods are time calibration using long eccentricity bandpass filtering (E1 bandpass) and tracking the long eccentricity from evolutive harmonic analysis (tracking EHA). The statistical mean and standard deviation of four age models from the four proxies are calculated to construct one integrated age model with age uncertainty in each method. Results demonstrate that extracting astronomical signals from multiple paleoclimate proxies is a valid method to estimate age model uncertainties. Anchored at the Cenomanian/Turonian boundary with an age of 93.9 +/- 0.15 Ma from biostratigraphy, the ages for CC11/CC12 (calcareous nannofossil zones), Turonian/Coniacian (CC12/CC13), CC13/CC14, and Coniacian/Santonian boundaries are 91.25 +/- 0.20 Ma, 89.87 +/- 0.20 Ma, 86.36 +/- 0.33 Ma, and 86.03 +/- 0.32 Ma in E1 bandpass method, compared with 91.17 +/- 0.36 Ma, 89.74 +/- 0.38 Ma, 86.13 +/- 1.31 Ma, and 85.80 +/- 1.33 Ma respectively in tracking EHA method. These results are consistent with previous studies within error and provide a reliable estimation of uncertainties of the ages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据