4.7 Article

Rapid synthesis of dielectric tantalum-based oxynitrides

期刊

MATERIALS & DESIGN
卷 187, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2019.108416

关键词

Perovskite; Oxynitride; Urea; Spark plasma sintering; Permittivity

资金

  1. National Natural Science Foundation of China [51702361]

向作者/读者索取更多资源

Perovskite-type oxynitride with a general formula of ATa(O,N)(3) (A = Sr, Ba) is a class of promising dielectric material due to their very high permittivity. Conventional synthesis routes for these materials always require multiple processing steps, long durations and elevated temperatures. In this study, thermodynamic calculations were employed to predict the feasible synthesis reactions, possible impurities and reasonable processing parameters. Then, ceramic powders of SrTaO2N and BaTaO2N were fabricated through direct calcination of SrCO3/BaCO3 and Ta2O5 with urea as nitrogen source by using a modified pressureless spark plasma sintering set-up. High-purity oxynitrides can be obtained within 10 min. Thermal stability, corrosion resistance and dielectric property were evaluated. The results showed that SrTaO2N was thermally stable up to 475 degrees C in air while that temperature for BaTaO2N was 605 degrees C. The oxynitrides possessed a good resistance to hot water and strong acid/alkali. BaTaO2N had a very high room-temperature relative permittivity up to 9550 with a dielectric loss down to 0.001 at 100 Hz, while the values for SrTaO2N were 3141 and 0.017 respectively. The temperature dependence of permittivity for BaTaO2N was weak at -10-200 degrees C. The efficient synthesis method enabled the fast preparation of the tantalum-based oxynitride materials for energy storage applications. (C) 2019 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据