4.7 Article

Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material

期刊

MATERIALS & DESIGN
卷 183, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2019.108154

关键词

Zn-based alloy; Microstructure; Mechanical properties; Corrosion behavior; Biodegradable; Antimicrobial properties

资金

  1. Polish National Science Centre [2018/29/N/ST8/01703]

向作者/读者索取更多资源

In this study, a new biodegradable alloy from the Zn-Ag-Zr system was investigated. Most importantly, mechanical properties and ductility were significantly improved in designed Zn1Ag0.05Zr alloy in comparison to binary Zn1Ag and previously investigated Zn0.05Zr alloys (wt%). The characterized alloy reached values of yield strength, ultimate tensile strength and elongation to failure equal to 166 +/- 2 MPa, 211 +/- 1 MPa and 35 +/- 1%, respectively. Simultaneous addition of both alloying elements contributed to solid solution strengthening, intermetallic Zr-rich phase formation, and effective grain refinement. Immersion and electrochemical in vitro corrosion tests showed a slight increase of degradation rate in ternary alloy up to 17.1 +/- 1.0 mu m/year and no significant loss of mechanical properties after 28-day of immersion in simulated physiological solution. In addition, the preliminary antimicrobial studies show antimicrobial activity of the investigated Zn-Ag-Zr alloy against Escherichia coli and Staphylococcus aureus. The presented results demonstrate that newly developed Zn-based alloy can be considered as a promising biodegradable material for medical applications. (C) 2019 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据