4.5 Article

A Deep Reinforcement Learning Approach for VNF Forwarding Graph Embedding

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSM.2019.2947905

关键词

Resource management; Optimization; Space exploration; Reinforcement learning; Quality of service; Complexity theory; Convergence; Network function virtualization; VNF-FG embedding; Deep reinforcement learning; Quality of Services

向作者/读者索取更多资源

Network Function Virtualization (NFV) and service orchestration simplify the deployment and management of network and telecommunication services. The deployment of these services requires, typically, the allocation of Virtual Network Function - Forwarding Graph (VNF-FG), which implies not only the fulfillment of the service's requirements in terms of Quality of Service (QoS), but also considering the constraints of the underlying infrastructure. This topic has been well-studied in existing literature, however, its complexity and uncertainty of available information unveil challenges for researchers and engineers. In this paper, we explore the potential of reinforcement learning techniques for the placement of VNF-FGs. However, it turns out that even the most well-known learning technique is ineffective in the context of a large-scale action space. In this respect, we propose approaches to find out feasible solutions while improving significantly the exploration of the action space. The simulation results clearly show the effectiveness of the proposed learning approach for this category of problems. Moreover, thanks to the deep learning process, the performance of the proposed approach is improved over time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据