4.7 Article

Effect of very fine nanoparticle and temperature on the electric and dielectric properties of MC-PbS polymer nanocomposite films

期刊

RESULTS IN PHYSICS
卷 16, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.rinp.2019.102898

关键词

Polymer nanocomposite; Lead sulfide nanoparticle; Conductivity; Activation energy; Loss tangent

资金

  1. University of Sulaimani - Ministry of Higher Education and Scientific Research-KRG, Iraq

向作者/读者索取更多资源

Lead sulphide (PbS) nanoparticles with very fine particle sizes were grown within methylcellulose (MC) as a capping agent, using in-situ chemical reduction from aqueous solution, and casting technique with different PbS concentrations. The XRD analysis revealed the decreases in the degree of crystallinity of PNC upon increasing PbS nanoparticles. The electrical and dielectric properties of the prepared polymer nanocomposites (PNCs) have been characterized using electrochemical impedance spectroscopy (EIS). The EIS analysis reveals a positive correlation between AC conductivity and both frequency and temperature for all PbS concentrations. At higher frequency, this correlation was found to have characteristics of Jonscher's power law. The correlation between frequency exponents and temperature was found to indicate that the conductive mechanism follows the correlated barrier hopping model (CBH). A similar positive relationship between DC conductivity and concentration was also observed. It is found that increasing PbS concentration also increases the dielectric constant and dielectric loss. The lowering of relaxation time is observed with the PbS addition that is in correlation with the AC conductivity results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据