4.5 Article

Enhancing visible light-activated NO2 sensing properties of Au NPs decorated ZnO nanorods by localized surface plasmon resonance and oxygen vacancies

期刊

MATERIALS RESEARCH EXPRESS
卷 7, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2053-1591/ab6b64

关键词

Au decorated ZnO nanorods; LSPR; surface oxygen vacancies; visible light-activated gas sensing; NO2 detection

资金

  1. Funds for Creative Research Groups of China [61421002]
  2. National Natural Science Foundation of China [61571097, 61604033]
  3. National Postdoctoral Program for Innovative Talents [BX201600026]

向作者/读者索取更多资源

Increasing light absorption is of crucial importance for optimizing light-activated gas detection. However, the relevant research is still far from sufficient. Herein, a high performance visible light-activated NO2 gas sensor is developed relied on the localized surface plasmon resonance (LSPR) and increased surface oxygen vacancies. Au NPs decorated ZnO nanorod array as sensitive materials was synthesized via a two-step low temperature hydrothermal process. The influences of Au decoration and light wavelength on the sensing behaviors were systematically investigated. It is found that the Au NPs decoration can largely promote the visible light-activated gas sensing properties in comparison with pure ZnO film. In addition, the as-prepared sensors demonstrate excellent repeatability and selectivity as well as moisture stability. Moreover, the sensing mechanism based on LSPR was discussed in detail. This work not only sheds some lights on the fundamental understanding for the LSPR enhanced gas sensing mechanism, but also offers an approach in constructing high-performance light-activated gas sensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据