4.4 Article

Experimental Investigation of a Combined Photovoltaic Thermal System via Air Cooling for Summer Weather of Egypt

出版社

ASME
DOI: 10.1115/1.4046597

关键词

photovoltaic thermal system; solar energy; surface temperature; forced-air cooling; performance assessment; overall efficiency; energy efficiency; energy systems; experimental techniques; forced convection; heat recovery; heat transfer enhancement; thermal systems

向作者/读者索取更多资源

Utilizing photovoltaic (PV) panels for generating electrical power is accompanied with a low electrical efficiency that is further reduced as its surface temperature surpasses an acceptable limit. In order to overcome this critical issue, it is necessary to maintain the PV panels relatively at low surface temperatures as possible as using appropriate cooling systems. The current implementation assesses experimentally the performance of a combined PV thermal (PV/T) system using a forced-air cooling system during April, May, June, and July of summer weather of Egypt. The results reveal that the highest values of the solar intensity and the ambient air temperature are obtained in July. Employing the forced-air cooling system reduces the average temperature on the front and back sides of the PV panel during July by 12% and 12.8%, respectively. In addition, the forced-air cooling system enhances noticeably the electrical power output of the PV panel by 3.3%, 4.3%, 4.5%, and 6.1% during April, May, June, and July, respectively. Moreover, the maximum value of the average thermal efficiency achieved during July is 37%; whereas, the corresponding value of the average overall efficiency fulfilled during April is 48.7%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据