4.8 Article

17.1% Efficient Single-Junction Organic Solar Cells Enabled by n-Type Doping of the Bulk-Heterojunction

期刊

ADVANCED SCIENCE
卷 7, 期 7, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201903419

关键词

additives; molecular doping; nonfullerene acceptors; organic photovoltaics

资金

  1. King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) [OSR-2018-CARF/CCF-3079]

向作者/读者索取更多资源

Molecular doping is often used in organic semiconductors to tune their (opto)electronic properties. Despite its versatility, however, its application in organic photovoltaics (OPVs) remains limited and restricted to p-type dopants. In an effort to control the charge transport within the bulk-heterojunction (BHJ) of OPVs, the n-type dopant benzyl viologen (BV) is incorporated in a BHJ composed of the donor polymer PM6 and the small-molecule acceptor IT-4F. The power conversion efficiency (PCE) of the cells is found to increase from 13.2% to 14.4% upon addition of 0.004 wt% BV. Analysis of the photoactive materials and devices reveals that BV acts simultaneously as n-type dopant and microstructure modifier for the BHJ. Under optimal BV concentrations, these synergistic effects result in balanced hole and electron mobilities, higher absorption coefficients and increased charge-carrier density within the BHJ, while significantly extending the cells' shelf-lifetime. The n-type doping strategy is applied to five additional BHJ systems, for which similarly remarkable performance improvements are obtained. OPVs of particular interest are based on the ternary PM6:Y6:PC71BM:BV(0.004 wt%) blend for which a maximum PCE of 17.1%, is obtained. The effectiveness of the n-doping strategy highlights electron transport in NFA-based OPVs as being a key issue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据