3.8 Article

Injectable Polymeric Delivery System for Spatiotemporal and Sequential Release of Therapeutic Proteins To Promote Therapeutic Angiogenesis and Reduce Inflammation

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 6, 期 2, 页码 1217-1227

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.9b01758

关键词

reverse thermal gel; therapeutic angiogenesis; sulfonation; sequential delivery; micelle nanoparticles

资金

  1. National Institutes of Health [T32 HL072738]
  2. American Heart Association [AHA/17GRNT33661024]

向作者/读者索取更多资源

Myocardial infarction (MI) causes cardiac cell death, induces persistent inflammatory responses, and generates harmful pathological remodeling, which leads to heart failure. Biomedical approaches to restore blood supply to ischemic myocardium, via controlled delivery of angiogenic and immunoregulatory proteins, may present an efficient treatment option for coronary artery disease (CAD). Vascular endothelial growth factor (VEGF) is necessary to initiate neovessel formation, while platelet-derived growth factor (PDGF) is needed later to recruit pericytes, which stabilizes new vessels. Anti-inflammatory cytokines like interleukin-10 (IL-10) can help optimize cardiac repair and limit the damaging effects of inflammation following MI. To meet these angiogenic and anti-inflammatory needs, an injectable polymeric delivery system composed of encapsulating micelle nanoparticles embedded in a sulfonated reverse thermal gel was developed. The sulfonate groups on the thermal gel electrostatically bind to VEGF and IL-10, and their specific binding affinities control their release rates, while PDGF-loaded micelles are embedded in the gel to provide the sequential release of the growth factors. An in vitro release study was performed, which demonstrated the sequential release capabilities of the delivery system. The ability of the delivery system to induce new blood vessel formation was analyzed in vivo using a subcutaneous injection mouse model. Histological assessment was used to quantify blood vessel formation and an inflammatory response, which showed that the polymeric delivery system significantly increased functional and mature vessel formation while reducing inflammation. Overall, the results demonstrate the effective delivery of therapeutic proteins to promote angiogenesis and limit inflammatory responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据