4.4 Article

Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites

期刊

WASTE AND BIOMASS VALORIZATION
卷 11, 期 10, 页码 5419-5430

出版社

SPRINGER
DOI: 10.1007/s12649-020-00986-7

关键词

Wood plastic composite; Recycling; Bulky plastic waste; Mechanical property; WPC manufacturing

资金

  1. European Union [690103]
  2. H2020 Societal Challenges Programme [690103] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

In this study, Wood Plastic Composites (WPCs) were produced from post-consumer bulky wastes of recycled plastic and wood in order to minimize waste, decrease environmental effects of plastics, reserve natural resources, and support circular economy for sustainable production and consumption. Five different types of polypropylene (PP) or polyethylene (PE) based recycled plastics and wood obtained from urban household bulky wastes were used in the production of recycled WPC composites, r-WPCs. Virgin WPC (v-WPC) and r-WPC compounds were prepared with wood flour (WF) and maleic anhydride grafted compatibilizer (MAPP or MAPE) to evaluate the effect of recycled polymer type and compatibilizer on the mechanical properties. It was found that tensile strength properties of r-WPCs produced from recycled PP (r-PP) were higher than that of the r-WPCs produced from mixed polyolefins and recycled PE. r-WPCs containing anti-oxidants, UV stabilizers, and compatibilizer with different WF compositions were produced from only recycled garden fraction PP (PPFGF) to determine the optimum composition and processing temperature for pilot scale manufacturing of r-WPCs. Based on tensile, impact, flexural, and water sorption properties of r-WPC compounds with different formulations, the optimum conditions of r-WPC compounds for industrial manufacturing process were determined. Surface morphology of fractured surfaces as well as tensile, flexural and density results of r-WPC compounds revealed the enhancement effect of MAPP on interfacial adhesion in r-WPCs. r-WPC products (crates and table/chair legs) based on bulky wastes were produced using an injection molding process at industrial scale by using 30 wt% WF-filled r-WPC compound. This study demonstrated that r-WPC compounds from recycled bulky plastic and wood wastes can be used as a potential raw material in plastic as well as WPC industry, contributing to circular economy. Graphic

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据