4.5 Article

Linear and Circular Dichroism in Graphene-Based Reflectors for Polarization Control

期刊

PHYSICAL REVIEW APPLIED
卷 13, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.13.024046

关键词

-

向作者/读者索取更多资源

We present an ultrathin graphene metascreen that possesses dispersive optical activity in the early terahertz spectrum. The metascreen design consists of periodically etched L-shaped voids on a graphene substrate backed by a conductive plane. The specific unit-cell design is based on chirality and leads to highly asymmetric radiations from the plasmon-polariton surface currents, leading to linear and circular dichroism. Hence the incident linearly or circularly polarized electric fields are effectively absorbed by the metasurface in different proportions. Consequently, the metasurface assumes half- and quarter-wave-plate behaviors in different parts of the reflected optical spectrum. In particular, we show via full-wave simulations that the dichroic metascreen supports perfect linear-to-circular polarization conversion (circular dichroism) in two adjacent terahertz frequency bands. In two other terahertz bands, it rotates the incoming linearly polarized wave vector by 90 degrees (linear dichroism). Moreover, since graphene has a variable refractive-index dependence on its chemical potential, the dispersion characteristics can be shifted to neighboring frequencies within the early terahertz spectrum. We further demonstrate an angularly stable response for incident angles varying between 0 degrees and 45 degrees. The tunable linear and circular dichroism characteristics are well suited for applications in sensing, imaging, and spectroscopy at terahertz frequencies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据