4.5 Article

Fundamental Efficiency Bounds for the Conversion of a Radiative Heat Engine's Own Emission into Work

期刊

PHYSICAL REVIEW APPLIED
卷 12, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.12.064018

关键词

-

资金

  1. Engineering and Physical Science Research Council grant Joint UK-India Clean Energy Centre [EP/P003605/1]
  2. Institute of Advanced Studies of the University of Western Australia
  3. University of New South Wales
  4. EPSRC [EP/P003605/1] Funding Source: UKRI

向作者/读者索取更多资源

The thermoradiative diode is a novel heat engine that converts athermal radiative emission from a hot converter to a colder environment into work. This stands in contrast to essentially all radiative heat engines realized to date, where an external hot reservoir radiates toward a converter that resides at (and can be reversibly coupled to) a cold reservoir. We derive the fundamental bounds on conversion efficiency and power production for generalized far-field hot-side heat engines with radiative exchange that can be black body (thermal) or, more generally, athermal. This is followed by the corresponding derivation for the rich landscape of performance bounds for the specific case of thermoradiative diodes, including why the Landsberg-efficiency limit associated with heat engines that include radiative exchange can be surpassed, and how the ultimate Carrot-efficiency limit could be approached.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据