4.7 Article

Rapid Room-Temperature Synthesis of Mesoporous TiO2 Sub-Microspheres and Their Enhanced Light Harvesting in Dye-Sensitized Solar Cells

期刊

NANOMATERIALS
卷 10, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/nano10030413

关键词

titanium dioxide; dye-sensitized solar cells; anatase; surfactant; CTAB; light scattering

资金

  1. Deanship of Scientific Research at King Saud University [RG-1440-055]

向作者/读者索取更多资源

Submicron sized mesoporous spheres of TiO2 have been a potential alternative to overcome the light scattering limitations of TiO2 nanoparticles in dye-sensitized solar cells (DSSCs). Currently available methods for the growth of mesoporous TiO2 sub-microspheres involve long and relatively high temperature multi-stage protocols. In this work, TiO2 mesoporous sub-microspheres composed of similar to 5 nm anatase nanocrystallites were successfully synthesized using a rapid one-pot room-temperature CTAB-based solvothermal synthesis. X-Ray Diffraction (XRD) showed that the grown structures have pure anatase phase. Transmission electron microscopy (TEM) revealed that by reducing the surfactant/precursor concentration ratio, the morphology could be tuned from monodispersed nanoparticles into sub-micron sized mesoporous beads with controllable sizes (50-200 nm) and with good monodispersity as well. The growth mechanism is explained in terms of the competition between homogeneous nucleation/growth events versus surface energy induced agglomeration in a non-micelle CTAB-based soft templating environment. Further, dye-sensitized solar cells (DSSCs) were fabricated using the synthesized samples and characterized for their current-voltage characteristics. Interestingly, the DSSC prepared with 200 nm TiO2 sub-microspheres, with reduced surface area, has shown close efficiency (5.65%) to that of DSSC based on monodispersed 20 nm nanoparticles (5.79%). The results show that light scattering caused by the agglomerated sub-micron spheres could compensate for the larger surface areas provided by monodispersed nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据