4.7 Article

Effects of Filament Extrusion, 3D Printing and Hot-Pressing on Electrical and Tensile Properties of Poly(Lactic) Acid Composites Filled with Carbon Nanotubes and Graphene

期刊

NANOMATERIALS
卷 10, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/nano10010035

关键词

MWCNT; GNP; hybrid composites; filament; 3D printing (FDM); TEM; DSC; electrical conductivity; tensile test

资金

  1. Marie Sklodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-2016 [734164]
  2. Marie Curie Actions (MSCA) [734164] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

In this study, the effects of three processing stages: filament extrusion, 3D printing (FDM), and hot-pressing are investigated on electrical conductivity and tensile mechanical properties of poly(lactic) acid (PLA) composites filled with 6 wt.% of multiwall carbon nanotubes(MWCNTs), graphene nanoplatelets (GNPs), and combined fillers. The filaments show several decades' higher electrical conductivity and 50-150% higher values of tensile characteristics, compared to the 3D printed and the hot-pressed samples due to the preferential orientation of nanoparticles during filament extrusion. Similar tensile properties and slightly higher electrical conductivity are found for the hot-pressed compared to the 3D printed samples, due to the reduction of interparticle distances, and consequently, the reduced tunneling resistances in the percolated network by hot pressing. Three structural types are observed in nanocomposite filaments depending on the distribution and interactions of fillers, such as segregated network, homogeneous network, and aggregated structure. The type of structural organization of MWCNTs, GNPs, and combined fillers in the matrix polymer is found determinant for the electrical and tensile properties. The crystallinity of the 3D printed samples is higher compared to the filament and hot-pressed samples, but this structural feature has a slight effect on the electrical and tensile properties. The results help in understanding the influence of processing on the properties of the final products based on PLA composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据