4.7 Article

Adsorptive and Reductive Removal of Chlorophenol from Wastewater by Biomass-Derived Mesoporous Carbon-Supported Sulfide Nanoscale Zerovalent Iron

期刊

NANOMATERIALS
卷 9, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/nano9121786

关键词

porous carbon; zerovalent iron; biomass; dichlorination; adsorption

资金

  1. Natural Science Foundation of Jiangsu Province [BK20170475]
  2. Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Material and Enviromental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province

向作者/读者索取更多资源

Chlorinated compounds in a water environment pose serious threats to humanity. A nanoscale zerovalent iron (nZVI) has desirable properties for water dichlorination, but its reactivity is still limited by agglomeration and oxidation. In this study, the mesoporous carbon (MC) derived from biomass waste was prepared for immobilizing nZVI, and the nZVI@MC was further modified by sulfur (S-nZVI@MC) to relieve surface oxidation. The synergistic effect between nZVI and surface modification, the reaction conditions and the removal mechanism were investigated systematically. The characterization results showed nZVI was successfully loaded on the surface of MC, and the aggregation of nZVI was prevented. Moreover, sulfidation modification resulted in the formation of FeS on the surface of nZVI, which effectively alleviated surface oxidation of nZVI and promoted the electron transfer. Batch experiments demonstrated S-nZVI@MC had greatly enhanced reactivity towards 2,4,6-trichlorphenol (TCP) as compared to MC and nZVI, and the removal rate could reach 100%, which was mainly attributed to the significant synergistic effect of MC immobilization and sulfidation modification. Furthermore, the TCP removal process was well described by a Langmuir adsorption model and pseudo-second-order model. The possible mechanism for enhanced removal of TCP is the fast adsorption onto S-nZVI@MC and effective reduction by S-nZVI. Therefore, with excellent reducing activity and antioxidation, S-nZVI@MC has the potential as a pollutant treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据