4.7 Article

Nitriding an Oxygen-Doped Nanocarbonaceous Sorbent Synthesized via Solution Plasma Process for Improving CO2 Adsorption Capacity

期刊

NANOMATERIALS
卷 9, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/nano9121776

关键词

carbon dioxide; adsorption; solution plasma process; carbonaceous material

资金

  1. 90th Anniversary of Chulalongkorn University Fund [GCUGR1125604023]
  2. Research Assistantship Fund [RAF_2561_004]
  3. Ratchadaphiseksomphot Endowment Fund [GB-A_CU_61_01_23_01]

向作者/读者索取更多资源

The synthesis of carbon nanoparticles (Cn) and oxygen-doped nanocarbon (OCn) was successfully done through a one-step synthesis by the solution plasma process (SPP). The Cn and OCn were nitrogen-doped by nitridation under an ammonia atmosphere at 800 degrees C for 2 h to yield NCn and NOCn, respectively, for carbon dioxide (CO2) adsorption. The NOCn exhibited the highest specific surface area (similar to 570 m(2) g(-1)) and highest CO2 adsorption capacity (1.63 mmol g(-1) at 25 degrees C) among the synthesized samples. The primary nitrogen species on the surface of NOCn were pyridinic-N and pyrrolic-N. The synergistic effect of microporosity and nitrogen functionality on the NOCn surface played an essential role in CO2 adsorption enhancement. From the thermodynamic viewpoint, the CO2 adsorption on NOCn was physisorption, exothermic, and spontaneous. The NOCn showed a more negative enthalpy of adsorption, indicating its stronger interaction for CO2 on the surface, and hence, the higher adsorption capacity. The CO2 adsorption on NOCn over the whole pressure range at 25-55 degrees C best fitted the Toth model, suggesting monolayer adsorption on the heterogeneous surface. In addition, NOCn expressed a higher selective CO2 adsorption than Cn and so was a good candidate for multicycle adsorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据