4.1 Article

The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/COPD.S234634

关键词

chronic obstructive pulmonary disease; apoptosis; HBO1; emphysema

资金

  1. National Natural Science Foundation of China [81400032, 81600031, 81873410]
  2. Fundamental Research Funds for the Central Universities of Central South University [2019zzts1047]

向作者/读者索取更多资源

Purpose: Epigenetic modification is one of most important mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD). The purpose of this study was to determine whether histone acetyltransferase binding to ORC1 (HBO1) can protect against cigarette smoke (CS)-induced cell apoptosis and sustain normal histone acetylation in COPD. Methods: Human lung tissue samples were obtained from patients who underwent lung resection. The emphysema mouse model and HBO1 overexpressing mice were each established by intraperitoneal injection with cigarette smoke extract (CSE) or intratracheal lentiviral vectors instillation. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays were used to assess apoptotic ratio in mice. The apoptosis of human bronchial epithelial cells (HBECs) was assayed by flow cytometry. HBO1, B-cell lymphoma-2 (BCL-2), and H3K14ac protein expression were detected by Western blotting. HBO1 mRNA expression was measured by quantitative real-time polymerase chain reaction. Results: Protein expression of HBO1 was decreased significantly in lung tissue from COPD patients and CSE-treated emphysema mouse models. Overexpression of HBO1 attenuated CSE-induced emphysematous changes, as well as apoptosis in the lungs of COPD mice. In vitro, the HBO1 protein degraded in a time- and dose-dependent course with CSE treatment. With flow cytometry, we proved that HBO1 could reverse the apoptosis of HBECs induced by CSE. Furthermore, HBO1 overexpression promoted the expression of antiapoptotic BCL-2 protein and enhanced H3K14 acetylation in airway epithelial cells. Conclusion: These findings demonstrate that the key histone modulator HBO1 plays a protective role in COPD pathogenesis that may shed light on potential therapeutic targets to inhibit the progress of COPD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据