4.6 Article

Manganese Oxide Nanorods Decorated Table Sugar Derived Carbon as Efficient Bifunctional Catalyst in Rechargeable Zn-Air Batteries

期刊

CATALYSTS
卷 10, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/catal10010064

关键词

manganese oxide; sucrose; sugar; Zn-air battery; electrocatalyst

资金

  1. Research, Community Service and Innovation Program (P3MI) Institut Teknologi Bandung

向作者/读者索取更多资源

Despite its commercial success as a primary battery, Zn-air battery is struggling to sustain a reasonable cycling performance mainly because of the lack of robust bifunctional electrocatalysts which smoothen the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) taking place on its air-cathode. Composites of carbon/manganese oxide have emerged as a potential solution with high catalytic performance; however, the use of non-renewable carbon sources with tedious and non-scalable synthetic methods notably compromised the merit of being low cost. In this work, high quantity of carbon is produced from renewable source of readily available table sugar by a facile room temperature dehydration process, on which manganese oxide nanorods are grown to yield an electrocatalyst of MnOx@AC-S with high oxygen bifunctional catalytic activities. A Zn-air battery with the MnOx@AC-S composite catalyst in its air-cathode delivers a peak power density of 116 mW cm(-2) and relatively stable cycling performance over 215 discharge and charge cycles. With decent performance and high synthetic yield achieved for the MnOx@AC-S catalyst form a renewable source, this research sheds light on the advancement of low-cost yet efficient electrocatalyst for the industrialization of rechargeable Zn-air battery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据