4.6 Article

Quantifying Nanoscale Electromagnetic Fields in Near-Field Microscopy by Fourier Demodulation Analysis

期刊

ACS PHOTONICS
卷 7, 期 2, 页码 344-351

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.9b01533

关键词

scattering-type SNOM; mid-infrared; nanoscopy; tomography; finite element method; demodulated fields

资金

  1. European Research Council [305003]
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [314695032 -SFB 1277, HU1598/3, CO1492]
  3. European Research Council (ERC) [305003] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Confining light to sharp metal tips has become a versatile technique to study optical and electronic properties far below the diffraction limit. Particularly near-field microscopy in the mid-infrared spectral range has found a variety of applications in probing nanostructures and their dynamics. Yet, the ongoing quest for ultimately high spatial resolution down to the single-nanometer regime and quantitative three-dimensional nano-tomography depends vitally on a precise knowledge of the spatial distribution of the near fields emerging from the probe. Here, we perform finite element simulations of a tip with realistic geometry oscillating above a dielectric sample. By introducing a novel Fourier demodulation analysis of the electric field at each point in space, we reliably quantify the distribution of the near fields above and within the sample. Besides inferring the lateral field extension, which can be smaller than the tip radius of curvature, we also quantify the probing volume within the sample. Finally, we visualize the scattering process into the far field at a given demodulation order, for the first time, and shed light onto the nanoscale distribution of the near fields, and its evolution as the tip-sample distance is varied. Our work represents a crucial step in understanding and tailoring the spatial distribution of evanescent fields in optical nanoscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据