4.8 Article

A built-in electric field induced by ferroelectrics increases halogen-free organic solar cell efficiency in various device types

期刊

NANO ENERGY
卷 68, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.104327

关键词

Electric field; Grafted copolymers; Ferroelectric additives; Organic solar cells; Environment-friendly processing

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2018R1A2A1A05077194]
  2. Center for Advanced Soft-Electronics - Ministry of Science and ICT [2012M3A6A5055225]
  3. Wearable Platform Materials Technology Center (WMC) - National Research Foundation of Korea Grant by the Korean Government (MSIT) [2016R1A5A1009926]
  4. Ulsan City of UNIST (Ulsan National Institute of Science Technology) [1.190099]
  5. MEST
  6. POSTECH
  7. UNIST UCRF

向作者/读者索取更多资源

In principle, an electric field via ferroelectric materials can affect the photovoltaic properties, although there is not yet a complete mechanistic understanding. Herein, a built-in electric field without a poling processing step was established by introducing developed PVDF-based ferroelectric additives within active-layer matrices of organic solar cells (OSCs). Upon the existence of the ferroelectric polarization induced by the ferroelectric additives in o-xylene/N-methylpyrrolidone pair featuring halogen-free processing system, high efficiencies of 11.02% and 11.76% are achieved in fullerene and non-fullerene acceptor bulk-heterojunction OSCs, respectively. A comparative study exploring the role of the ferroelectric polarization surrounding the active-layer matrix was also performed using structural, electrical, and morphological techniques, to shed light on the underlying ferroelectric polarization effects on OSCs. Furthermore, the use of the ferroelectric additive is extended to p-n like bilayer OSC to access a rich understanding of the complex enhancement mechanisms afforded by it, demonstrating a highly efficient (11.83%) bilayer device. The above results are fairly comparable to the highest value reported for the recently developed state-of-the-art OSCs processed from halogen-free systems. The use of the ferroelectric additives in the halogen-free system is promising in related organic-semiconductor fields for reasons extending beyond the enhancement of efficiency and the environment-friendly manufacturing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据