4.8 Article

Facile fabrication of a highly efficient moisture-driven power generator using laser-induced graphitization under ambient conditions

期刊

NANO ENERGY
卷 68, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.104364

关键词

Cellulose nanofiber; Laser induced graphitization; Vertical concentration gradient; Moisture-electricity energy transformation

资金

  1. National Research Foundation of Korea (NRF) - Korea government (Ministry of Science and ICT) [2019R1A5A8080290]

向作者/读者索取更多资源

A porous cellulose nanofiber (CNF) substrate was prepared by drying a TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl radical)-treated bleached pulp solution in a vacuum freeze dryer. A graphitic carbon layer (GCL) was fabricated directly onto the CNF substrate using infrared laser irradiation at ambient conditions. By focusing the laser beam on the top surface of the CNF substrate, higher conversion of the CNF to GCL was achieved on the top surface than the bottom surface. An oxygen-to-carbon ratio (O/C) gradient was established between the top and bottom surfaces during laser induced graphitization (LIG), as the O/C of the GCL decreased with laser intensity. When the GCL with the O/C gradient was exposed to water vapor, hydrolysis of the carboxyl groups in the GCL produced hydrogen ions. The resulting hydrogen ion concentration gradient between the top and bottom surfaces created electricity. At 82% relative humidity, the voltage and current outputs from a 3 x 3 mm(2) GCL were 0.83 V and 5.93 mu A/cm(2), respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据