4.4 Article

Multi-channel direct detection of light dark matter: theoretical framework

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 3, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP03(2020)036

关键词

Dark matter; Other experiments

资金

  1. Quantum Information Science Enabled Discovery (QuantISED) for High Energy Physics at LBNL [KA2401032]
  2. NSF [PHY-1638509]
  3. DoE [DE-AC02-05CH11231]
  4. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  5. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

We present a unified theoretical framework for computing spin-independent direct detection rates via various channels relevant for sub-GeV dark matter - nuclear re- coils, electron transitions and single phonon excitations. Despite the very different physics involved, in each case the rate factorizes into the particle-level matrix element squared, and an integral over a target material- and channel-specific dynamic structure factor. We show how the dynamic structure factor can be derived in all three cases following the same procedure, and extend previous results in the literature in several aspects. For electron transitions, we incorporate directional dependence and point out anisotropic target materials with strong daily modulation in the scattering rate. For single phonon excitations, we present a new derivation of the rate formula from first principles for generic spin-independent couplings, and include the first calculation of phonon excitation through electron couplings. We also discuss the interplay between single phonon excitations and nuclear recoils, and clarify the role of Umklapp processes, which can dominate the single phonon production rate for dark matter heavier than an MeV. Our results highlight the complementarity between various search channels in probing different kinematic regimes of dark matter scattering, and provide a common reference to connect dark matter theories with ongoing and future direct detection experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据