4.5 Article

Revealing the Mechanism of EGCG, Genistein, Rutin, Quercetin, and Silibinin Against hIAPP Aggregation via Computational Simulations

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s12539-019-00352-9

关键词

hIAPP; Flavonoids; Molecular docking; Molecular dynamics simulation

资金

  1. National Natural Science Foundation of China [31571782, 31771975]
  2. Natural Science Foundation of Chongqing CSTC [cstc2018jcyjAX0765]

向作者/读者索取更多资源

To inhibit hIAPP aggregation and reduce toxicity of its oligomers are one of the potential strategies for the treatment of Type 2 diabetes (T2D). It has been reported that there is an effective inhibitory effect on hIAPP aggregation by five natural flavonoids, including Genistein, Rutin, Quercetin, Epigallocatechin gallate (EGCG), and Silibinin, which are widely found in our daily food. However, the detailed mechanisms to inhibit hIAPP aggregation remain unclear. Here, we explore the mechanisms of the five flavonoids against hIAPP aggregation by molecular docking and molecular dynamics simulations. We show that these flavonoids can disaggregate Chain A and Chain B of hIAPP to reduce the extended conformation by binding with two regions of hIAPP, Leu(12)-Ala(13)-Asn(14) and Asn(31)-Val(32)-Gly(33)-Ser(34)-Asn(35), with the inhibitory ability of Genistein > Rutin > Quercetin > EGCG > Silibinin. These five compounds exhibit a common mechanism for disaggregation of the hIAPP pentamer; that is, they loosen the two nearest peptide chains to potentially destroy the hIAPP oligomer. Mutations of eight key residues remarkably affected by the flavonoids indicate that the secondary structures of the hIAPP pentamer change from beta-sheet to be random coil, thereby to destroy its structural stability; moreover, the 28th (Ser), 12th (Leu) and 32nd (Val) amino acids exhibit significant effects on structural stability of the hIAPP pentamer, providing an important hint that these amino acids can be considered as potential targets for design of new candidate inhibitors against hIAPP oligomers. This work is beneficial to understanding of mechanism of these inhibits against hIAPP aggregation and will facilitate screening, modification, and design of new inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据