4.6 Article

Finger Joint Angle Estimation Based on Motoneuron Discharge Activities

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2019.2926307

关键词

Biosignal processing; joint angle prediction; motor unit; finger movement; motor unit decomposition

资金

  1. National Science Foundation [CBET1847319]

向作者/读者索取更多资源

Estimation of joint kinematics plays an important role in intuitive human-machine interactions. However, continuous and reliable estimation of small (e.g., the finger) joint angles is still a challenge. The objective of this study was to continuously estimate finger joint angles using populational motoneuron firing activities. Multi-channel surface electromyogram (sEMG) signals were obtained from the extensor digitorum communis muscles, while the subjects performed individual finger oscillatory extension movements at two different speeds. The individual finger movement was first classified based on the EMG signals. The discharge timings of individual motor units were extracted through high-density EMG decomposition, and were then pooled as a composite discharge train. The firing frequency of the populational motor unit firing events was used to represent the descending neural drive to the motor unit pool. A second-order polynomial regression was then performed to predict the measured metacarpophalangeal extension angle using the derived neural drive based on the neuronal firings. Our results showed that individual finger extension movement can be classified with >96% accuracy based on multi-channel EMG. The extension angles of individual fingers can be predicted continuously by the derived neural drive with R-2 values >0.8. The performance of the neural-drive-based approach was superior to the conventional EMG-amplitude-based approach, especially during fast movements. These findings indicated that the neural-drive-based interface was a promising approach to reliably predict individual finger kinematics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据