4.6 Article

Deep Residual Inception Encoder-Decoder Network for Medical Imaging Synthesis

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2019.2912659

关键词

Image segmentation; Biomedical imaging; Task analysis; Image generation; Magnetic resonance imaging; Tumors; Deep learning; image synthesis; inception; medical imaging and residual net

资金

  1. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  2. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  3. National Institute on Aging
  4. National Institute of Biomedical Imaging and Bioengineering

向作者/读者索取更多资源

Image synthesis is a novel solution in precision medicine for scenarios where important medical imaging is not otherwise available. The convolutional neural network (CNN) is an ideal model for this task because of its powerful learning capabilities through the large number of layers and trainable parameters. In this research, we propose a new architecture of residual inception encoder-decoder neural network (RIED-Net) to learn the nonlinear mapping between the input images and targeting output images. To evaluate the validity of the proposed approach, it is compared with two models from the literature: synthetic CT deep convolutional neural network (sCT-DCNN) and shallow CNN, using both an institutional mammogram dataset from Mayo Clinic Arizona and a public neuroimaging dataset from the Alzheimers Disease Neuroimaging Initiative. Experimental results show that the proposed RIED-Net outperforms the two models on both datasets significantly in terms of structural similarity index, mean absolute percent error, and peak signal-to-noise ratio.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据