4.7 Article

Automated Methods Enable Direct Computation on Phenotypic Descriptions for Novel Candidate Gene Prediction

期刊

FRONTIERS IN PLANT SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2019.01629

关键词

ontology; natural language processing; machine learning; semantic similarity; phenotype; phenologs

资金

  1. Iowa State University Presidential Interdisciplinary Research Seed Grant
  2. Iowa State University Plant Sciences Institute Faculty Scholars Program
  3. Predictive Plant Phenomics NSF Research Traineeship [DGE-1545453]

向作者/读者索取更多资源

Natural language descriptions of plant phenotypes are a rich source of information for genetics and genomics research. We computationally translated descriptions of plant phenotypes into structured representations that can be analyzed to identify biologically meaningful associations. These representations include the entity-quality (EQ) formalism, which uses terms from biological ontologies to represent phenotypes in a standardized, semantically rich format, as well as numerical vector representations generated using natural language processing (NLP) methods (such as the bag-of-words approach and document embedding). We compared resulting phenotype similarity measures to those derived from manually curated data to determine the performance of each method. Computationally derived EQ and vector representations were comparably successful in recapitulating biological truth to representations created through manual EQ statement curation. Moreover, NLP methods for generating vector representations of phenotypes are scalable to large quantities of text because they require no human input. These results indicate that it is now possible to computationally and automatically produce and populate large-scale information resources that enable researchers to query phenotypic descriptions directly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据