4.4 Review

Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA

期刊

FIRE ECOLOGY
卷 16, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s42408-019-0062-8

关键词

adaptation; climate change; disturbance regimes; drought; fire regime; Pacific Northwest; regeneration; vegetation

资金

  1. US Department of the Interior, Northwest Climate Adaptation Science Center
  2. US Forest Service Pacific Northwest Research Station and Office of Sustainability and Climate

向作者/读者索取更多资源

Background Wildfires in the Pacific Northwest (Washington, Oregon, Idaho, and western Montana, USA) have been immense in recent years, capturing the attention of resource managers, fire scientists, and the general public. This paper synthesizes understanding of the potential effects of changing climate and fire regimes on Pacific Northwest forests, including effects on disturbance and stress interactions, forest structure and composition, and post-fire ecological processes. We frame this information in a risk assessment context, and conclude with management implications and future research needs. Results Large and severe fires in the Pacific Northwest are associated with warm and dry conditions, and such conditions will likely occur with increasing frequency in a warming climate. According to projections based on historical records, current trends, and simulation modeling, protracted warmer and drier conditions will drive lower fuel moisture and longer fire seasons in the future, likely increasing the frequency and extent of fires compared to the twentieth century. Interactions between fire and other disturbances, such as drought and insect outbreaks, are likely to be the primary drivers of ecosystem change in a warming climate. Reburns are also likely to occur more frequently with warming and drought, with potential effects on tree regeneration and species composition. Hotter, drier sites may be particularly at risk for regeneration failures. Conclusion Resource managers will likely be unable to affect the total area burned by fire, as this trend is driven strongly by climate. However, fuel treatments, when implemented in a spatially strategic manner, can help to decrease fire intensity and severity and improve forest resilience to fire, insects, and drought. Where fuel treatments are less effective (wetter, high-elevation, and coastal forests), managers may consider implementing fuel breaks around high-value resources. When and where post-fire planting is an option, planting different genetic stock than has been used in the past may increase seedling survival. Planting seedlings on cooler, wetter microsites may also help to increase survival. In the driest topographic locations, managers may need to consider where they will try to forestall change and where they will allow conversions to vegetation other than what is currently dominant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据