4.6 Article

Critical Knowledge Gaps for Understanding Water-Rock-Working Phase Interactions for Compressed Energy Storage in Porous Formations

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.9b05388

关键词

Energy storage; Multiphase flow; Working phase properties; Geochemical reactions

资金

  1. Auburn University

向作者/读者索取更多资源

Storage of air or compressed gas in porous formations is a promising means of large-scale, long-term energy storage, but salt caverns have predominantly been used for storage to date. Porous formations are ubiquitous and have high capacities but introduce new, complex water-rock-working phase interactions due to their greater depths, variable pressure, and saturation with saline brines. Extensive work in the context of geologic sequestration in porous formations has advanced understanding of these interactions and can be leveraged to assess energy storage systems. However, key differences in these systems need to be considered, notably the range of possible working phases (hydrogen, CO2, air, methane, and gas mixtures) and cyclic injection-extraction flow patterns. Recent advancements in understanding of water-rock-working phase interactions in the context of geologic CO2 sequestration have illuminated the need to understand the properties of the working gas under storage conditions to accurately assess storage capacity and the relative permeability and capillary pressure to assess injectivity and operational efficiency. Following injection, geochemical interactions between the working gas and formation brine and minerals can change formation and caprock properties that impact operational and storage security but have largely not been considered in energy storage systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据