4.7 Article

Spinel rGO Wrapped CoV2O4 Nanocomposite as a Novel Anode Material for Sodium-Ion Batteries

期刊

POLYMERS
卷 12, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/polym12030555

关键词

anode; sodium ion batteries; spinel; reduced graphene oxides

资金

  1. Ministry of Science and Technology, Taiwan [107-2811-M-033-506, 108EFD0500003, 108-2811-E-033-500, 109-2911-I-033-502, 108-E-033-MY3, 109-3116-F-006-018]

向作者/读者索取更多资源

Binary mixed transition-based metal oxides have some of the most potential as anode materials for rechargeable advanced battery systems due to their high theoretical capacity and tremendous electrochemical performance. Nonetheless, binary metal oxides still endure low electronic conductivity and huge volume expansion during the charge/discharge processes. In this study, we synthesized a reduced graphene oxide (rGO)-wrapped CoV2O4 material as the anode for sodium ion batteries. The X-ray diffraction analyses revealed pure-phased CoV2O4 (CVO) rGO-wrapped CoV2O4 (CVO/rGO) nanoparticles. The capacity retention of the CVO/rGO composite anode demonstrated 81.6% at the current density of 200 mA/g for more than 1000 cycles, which was better than that of the bare one of only 73.5% retention. The as-synthesized CVO/rGO exhibited remarkable cyclic stability and rate capability. The reaction mechanism of the CoV2O4 anode with sodium ions was firstly studied in terms of cyclic voltammetry (CV) and ex situ XRD analyses. These results articulated the manner of utilizing the graphene oxide-coated spinel-based novel anode-CoV2O4 as a potential anode for sodium ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据