4.7 Article

IL-23 supports host defense against systemic Candida albicans infection by ensuring myeloid cell survival

期刊

PLOS PATHOGENS
卷 15, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1008115

关键词

-

资金

  1. Swiss National Science Foundation [310030_166206]
  2. University of Zurich
  3. Swiss National Science Foundation (SNF) [310030_166206] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Author summary Linked to advances in medical technology and the resulting increase in the number of intensive care patients, nosocomial infections with Candida albicans are on the rise. In patients suffering from invasive candidiasis the innate immune response is typically severely impaired. Strengthening the innate immune system has become a promising approach complementing the use of antifungal drugs. Our findings identify an unexpected and IL-17-independent role of IL-23 that prevents rapid death of myeloid cells during systemic candidiasis and thereby promotes optimal protection from disease. As such, IL-23 represents an important new piece in the puzzle of the finely tuned network of cytokines that regulates the innate immune response to fungal infection. Our results contribute to a better understanding of myeloid cell regulation during infection and thereby open new perspectives for future immunotherapeutic applications that may improve patient outcome. The opportunistic fungal pathogen Candida albicans can cause invasive infections in susceptible hosts and the innate immune system, in particular myeloid cell-mediated immunity, is critical for rapid immune protection and host survival during systemic candidiasis. Using a mouse model of the human disease, we identified a novel role of IL-23 in antifungal defense. IL-23-deficient mice are highly susceptible to systemic infection with C. albicans. We found that this results from a drastic reduction in all subsets of myeloid cells in the infected kidney, which in turn leads to rapid fungal overgrowth and renal tissue injury. The loss in myeloid cells is not due to a defect in emergency myelopoiesis or the recruitment of newly generated cells to the site of infection but, rather, is a consequence of impaired survival of myeloid cells at the site of infection. In fact, the absence of a functional IL-23 pathway causes massive myeloid cell apoptosis upon C. albicans infection. Importantly, IL-23 protects myeloid cells from apoptosis independently of the IL-23-IL-17 immune axis and independently of lymphocytes and innate lymphoid cells. Instead, our results suggest that IL-23 acts in a partially autocrine but not cell-intrinsic manner within the myeloid compartment to promote host protection from systemic candidiasis. Collectively, our data highlight an unprecedented and non-canonical role of IL-23 in securing survival of myeloid cells, which is key for maintaining sufficient numbers of cells at the site of infection to ensure efficient host protection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据