4.5 Article

Protective immunity elicited by the nematode-conserved As37 recombinant protein against Ascaris suum infection

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 14, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0008057

关键词

-

资金

  1. Michelson Medical Research Foundation

向作者/读者索取更多资源

Background Ascaris lumbricoides is one of the three major soil-transmitted gastrointestinal helminths (STHs) that infect more than 440 million people in the world, ranking this neglected tropical disease among the most common afflictions of people living in poverty. Children infected with this roundworm suffer from malnutrition, growth stunting as well as cognitive and intellectual deficits. An effective vaccine is urgently needed to complement anthelmintic deworming as a better approach to control helminth infections. As37 is an immunodominant antigen of Ascaris suum, a pig roundworm closely related to the human A. lumbricoides parasite, recognized by protective immune sera from A. suum infected mice. In this study, the immunogenicity and vaccine efficacy of recombinant As37 were evaluated in a mouse model. Methodology/Principal findings As37 was cloned and expressed as a soluble recombinant protein (rAs37) in Escherichia coli. The expressed rAs37 was highly recognized by protective immune sera from A. suum egg-infected mice. Balb/c mice immunized with 25 mu g rAs37 formulated with AddaVax((TM)) adjuvant showed significant larval worm reduction after challenge with A. suum infective eggs when compared with a PBS (49.7%) or adjuvant control (48.7%). Protection was associated with mixed Th1/2-type immune responses characterized by high titers of serological IgG1 and IgG2a and stimulation of the production of cytokines IL-4, IL-5, IL-10 and IL-13. In this experiment, the AddaVax((TM)) adjuvant induced better protection than the Th1-type adjuvant MPLA (38.9%) and the Th2-type adjuvant Alhydrogel (40.7%). Sequence analysis revealed that As37 is a member of the immunoglobulin superfamily (IgSF) and highly conserved in other human STHs. Anti-As37 antibodies strongly recognized homologs in hookworms (Necator americanus, Ancylostoma ceylanicum, A. caninum) and in the whipworm Trichuris muris, but there was no cross-reaction with human spleen tissue extracts. These results suggest that the nematode-conserved As37 could serve as a pan-helminth vaccine antigen to prevent all STH infections without cross-reaction with human IgSF molecules. Author summary Ascaris infection is the most common infection of humans living in poverty worldwide and can result in malnutrition and stunted physical and mental development in children. A preventive vaccine is urgently needed as a complementary approach to anthelmintic deworming to increase the efficiency of STH infection control. To develop a vaccine against Ascaris infection, an immunodominant antigen, As37 of A. suum, was cloned and expressed as a soluble recombinant protein in E. coli. The recombinant As37 protein (rAs37) was highly recognized by protective immune sera from A. suum infected mice. Balb/c mice immunized with 25 mu g rAs37 formulated with the adjuvant AddaVax((TM)) showed significant larval worm reduction against challenge with A. suum infective eggs when compared to a PBS (49.7%) or adjuvant control (48.7%). Protection was associated with a mixed Th1/2-type immune response characterized by high titers of serological IgG1 and IgG2a and stimulation of the production of cytokines IL-4, IL-5, IL-10 and IL-13. The AddaVax((TM)) adjuvant induced better protection than the Th1-type adjuvant MPLA (38.9%) and the Th2-type adjuvant Alhydrogel (40.7%). Sequence analysis revealed that As37 was a member of the immunoglobulin superfamily (IgSF) and highly conserved in other human STHs. Anti-As37 antibodies strongly recognized homologs in hookworms (Necator americanus, A. ceylanicum, A. caninum) and in the whipworm T. muris, but there was no cross-reaction with human spleen tissue extracts. These results indicate that the nematode-conserved As37 protein could be developed as a pan-helminth vaccine antigen to prevent all STH infections without reacting with human IgSF molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据