4.6 Article

Eco-evolutionary agriculture: Host-pathogen dynamics in crop rotations

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 16, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1007546

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

Since its origins, thousands of years ago, agriculture has been challenged by the presence of evolving plant pathogens. Temporal rotations of host and non-host crops have helped farmers to control epidemics among other utilities, but further efforts for strategy assessment are needed. Here, we present a methodology for developing crop rotation strategies optimal for control of pathogens informed by numerical simulations of eco-evolutionary dynamics in one field. This approach can integrate agronomic criteria used in crop rotations-soil quality and cash yield-and the analysis of pathogen evolution in systems where hosts are artificially selected. Our analysis shows which rotation patterns perform better in maximising crop yield when an unspecified infection occurs, with yield being dependent on both soil quality and the strength of the epidemic. Importantly, the use of non-host crops, which both improve soil quality and control the epidemic results in similar rational rotation strategies for diverse agronomic and infection conditions. We test the repeatability of the best rotation patterns over multiple decades, an essential end-user goal. Our results provide sustainable strategies for optimal resource investment for increased food production and lead to further insights into the minimisation of pesticide use in a society demanding ever more efficient agriculture. Author summary The invention of agriculture is a major evolutionary transition in the social evolution of the human race. Transforming the lifestyle from nomadic to sedentary, agriculture provided humankind with the stability necessary to make rapid advancements. However, agriculture, as we know it, is now in danger. While agriculture is a grand artificial selection experiment, it is in a constant battle with the brute force of natural selection, generating highly infectious plant pathogens. Traditional techniques such as slash-burn techniques are not sustainable for feeding the ever-increasing population. Crop rotation, on the other hand, has been developed over thousands of years as a sustainable method. We provide a computational model of how crop rotations can be used to tackle pathogen infection and what properties of rotation patterns make them sustainable in the long run. We hope that this study, together with other sustainable methods such as minimal pesticide use and biocontrol, can make agriculture more efficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据