4.7 Article

A White-Box Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2019.2901062

关键词

Neural networks; Mathematical model; Estimation; Integrated circuit modeling; Computational modeling; Electronic countermeasures; Task analysis; Battery management system (BMS); electrochemical cell modeling; neural networks; state of charge (SoC) estimation; system identification; white-box modeling

向作者/读者索取更多资源

Smart grids, microgrids, and pure electric powertrains are the key technologies for achieving the expected goals concerning the restraint of CO2 emissions and global warming. In this context, an effective use of electrochemical energy storage systems (ESSs) is mandatory. In particular, accurate state of charge (SoC) estimations are helpful for improving the ESS performances. To this aim, developing accurate models of electrochemical cells is necessary for implementing effective SoC estimators. Therefore, a novel neural network modeling technique is proposed in this paper. The main contribution consists in the development of a white-box neural design that provides helpful insights into the cell physics, together with a powerful nonlinear approximation capability, and a flexible system identification procedure. In order to do that, the system equations of a white-box equivalent circuit model (ECM) have been combined with computational intelligence techniques by approximating each circuit element with a dedicated neural network. The model performances have been analyzed in terms of model accuracy, SoC estimation effectiveness, and computational cost over two realistic data sets. Moreover, the proposed model has been compared with a white-box ECM and a gray-box neural network model. The results prove that the proposed modeling technique is able to provide useful improvements in the SoC estimation task with a competing computational cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据